Skip to main content

Computation v Security: Encryption and Hashing

As an aside on previous post on computation and security requirements I thought I'd add a note on an obvious omission, encryption and hashing...

Tricks like encryption and hashing aren't really applicable to computation security requirements even though they are computations themselves. Encryption and hashing are more applicable to transport (connections) and storage (data). It's nigh-on impossible to do any computation on encrypted data so you generally need it in plain-text form (homomorphic encryption aside since it's not really market ready yet).

Hashing is a useful tool in so many cases but is increasingly becoming overused. The compute power available today; especially in the cloud, means its relatively easy for someone to create a lookup database of all words in hashed form. This can then be used to identify user passwords for example. You can salt the hash to make it more distinct but this then means you need to manage the salt; and likely change it from time to time for the same reason you change encryption keys. Forcing longer and more complex passwords helps (well, maybe, that's another debate) but with compute power in 5 years time it may well be pointless and alternative forms of identification will be needed (if they aren't already).

Using hashes to obscure data such as postcodes or dates is even less worthy as the number of hashes you need to create are limited and can be computed in seconds on a modern computer. Date-of-birth for example is limited to say 100 years * 365 days worth of hashes. A particularly determined attacker could even look at the distribution of these hashes to determine that it's date data even if it's not labelled as such.

Encryption and hashing are useful for data transfer and persistence but; whilst they're clearly computational tasks themselves, they're not generally requirements for computational components currently.

Comments

Popular posts from this blog

An Observation

Much has changed in the past few years, hell, much has changed in the past few weeks, but that’s another story... and I’ve found a little time on my hands in which to tidy things up. The world of non-functionals has never been so important and yet remains irritatingly ignored by so many - in particular by product owners who seem to think NFRs are nothing more than a tech concern. So if your fancy new product collapses when you get get too many users, is that ok? It’s fair that the engineering team should be asking “how many users are we going to get?”,   or “how many failures can we tolerate?” but the only person who can really answer those questions is the product owner.   The dumb answer to these sort of question is “lots!”, or “none!” because at that point you’ve given carte-blanche to the engineering team to over engineer... and that most likely means it’ll take a hell of a lot longer to deliver and/or cost a hell of a lot more to run. The dumb answer is also “only a couple” and “

Inter-microservice Integrity

A central issue in a microservices environment is how to maintain transactional integrity between services. The scenario is fairly simple. Service A performs some operation which persists data and at the same time raises an event or notifies service B of this action. There's a couple of failure scenarios that raise a problem. Firstly, service B could be unavailable. Does service A rollback or unpick the transaction? What if it's already been committed in A? Do you notify the service consumer of a failure and trigger what could be a cascading failure across the entire service network? Or do you accept long term inconsistency between A & B? Secondly, if service B is available but you don't commit in service A before raising the event then you've told B about something that's not committed... What happens if you then try to commit in A and find you can't? Do you now need to have compensating transactions to tell service B "oops, ignore that previous messag

Equifax Data Breach Due to Failure to Install Patches

"the Equifax data compromise was due to their failure to install the security updates provided in a timely manner." Source: MEDIA ALERT: The Apache Software Foundation Confirms Equifax Data Breach Due to Failure to Install Patches Provided for Apache® Struts™ Exploit : The Apache Software Foundation Blog As simple as that apparently. Keep up to date with patching.